250 research outputs found

    microRNA. Diagnostic Perspective

    Get PDF
    Biomarkers are biological measures of a biological state. An ideal marker should be safe and easy to measure, cost efficient, modifiable with treatment, and consistent across gender and ethnic groups. To date, none of the available biomarkers satisfy all of these criteria. In addition, the major limitations of these markers are low specificity, sensitivity, and false positive results. Recently identified, microRNAs (miRNAs) are endogenous, evolutionarily conserved small non-coding RNA (about 22-25 nt long), also known as micro-coordinators of gene expression, which have been shown to be an effective tools to study the biology of diseases and to have great potential as novel diagnostic and prognostic biomarkers with high specificity and sensitivity. In fact, it has been demonstrated that miRNAs play a pivotal role in the regulation of a wide range of developmental and physiological processes and their deficiencies have been related to a number of disease. In addition, miRNAs are stable and can be easily isolated and measured from tissues and body fluids. In this review, we provide a perspective on emerging concepts and potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, subtypes, cardiovascular diseases, diabetes, infectious diseases, and forensic test

    Firm productivity and institutional quality: Evidence from italian industry

    Get PDF
    This paper aims to contribute to the debate on the determinants of differentials in firms' productivity. We test the hypothesis that macro factors, especially the quality of local institutions, play a central role in explaining firm productivity in Italy. To this end, we construct measures of Total Factor Productivity (TFP) for about 4,000 firms by means of different estimation techniques, and a province-level index of institutional quality. Then, we estimate the relationship between institutional quality and firm-level TFP. Our results show that the existence of better local institutions might help firms to become more productive

    Fez1/Lzts1 a new mitotic regulator implicated in cancer development

    Get PDF
    Considerable evidence has accumulated suggesting that cancer has genetic origin, based on the development of genomic alterations, such as deletions, mutations, and/or methylations in critical genes for homeostasis of cellular functions, including cell survival, DNA replication and cell cycle control. Mechanism controlling the precise timing and sequence of cell cycle events as well as checkpoints insuring fidelity of those events are key targets that when disrupted could result in tumorigenesis. Mitosis is the process by which a cell duplicates its genetic information (DNA), in order to generate two, identical, daughter cells. In addition each daughter cell must receive one centrosome and the appropriate complements of cytoplasm and organelles. This process is conventionally divided in to five distinct stages: prophase, prometaphase, metaphase, anaphase and telophase that correspond to a different morphology of the cell. The entry into mitosis (M) is under the control of the cyclin dependent kinase Cdk1. During G2, the kinases Wee1 and Myt1 phosphorylate Cdk1 at T14/Y15 residues, rendering it inactive. The transition from G2 to M is promoted by the activation of Cdk1 via dephosphorylation by the Cdk1 phosphatase Cdc25C. Activated Cdk1 complexes translocate into the nucleus during prophase where phosphorylate numerous substrates in order to enhance their activation as the cells progresses trough prophase, prometaphase, and metaphase

    role of micrornas in the molecular diagnosis of cancer

    Get PDF
    MicroRNAs (miRNAs) are evolutionarily conserved, endogenous, small non-coding RNA molecules of about 22 nucleotides in length that function as posttranscriptional gene regulators. They are involved in numerous cellular processes including development, cell differentiation, cell cycle regulation and apoptosis. There is increasing evidence to show that miRNAs are mutated or differentially expressed in many types of cancer and specific functions of the miRNAs are now becoming apparent. Here we discuss the current literature on potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, highlighting their potential role in distinguishing benign from malignant tissues and/or the different subtypes of the same tumor and/or in diagnosis and classification of tumor of unknown origin

    Mozart’s or ambient music do not affect autoalgometric pain threshold

    Get PDF
    Nowadays, researchers and clinicians are increasingly interested in alternative nonpharmacological treatments, and music therapy seems to have additional and powerful effects on different pathologies and pain. However, since pain is a subjective perception, it is difficult to evaluate if and which effect music has on it. In this study, a new device and method have been introduced to objectively estimate pain threshold and its changes related to external stimuli. The abovementioned device, called autoalgometer, allows to evaluate pain threshold changes while listening to music or other sounds. In this experiment, the pain threshold was evaluated in twenty-seven volunteers after listening to one out of three different soundtracks: white noise, Mozart’s sonata K448 or Brian Eno’s ambient music. Compared to staying in silence, listening to the recordings had no significant effect on pain threshold, and the results did not show any significant difference between the experimental groups. Probably, the positive effect of music described in other studies can be ascribed to a psychological effect, meaning that music can improve subjective mood and, thus, modify pain perception

    Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams

    Get PDF
    We report an experimental analysis of femtosecond laser induced surface structuring of silicon by exploiting both Gaussian and Optical Vortex beams. In particular, we show how different surface patterns, consisting of quasi-periodic ripples and grooves, can be obtained by using different states of polarization offered by optical vortex beams. Both for Gaussian and optical vortex beams, an increase of the number of laser pulses, N, or beam energy, E-0, leads to a progressive predominance of the grooves coverage, with ripples confined in specific regions of the irradiated area at lower fluence. The average period of ripples and grooves shows a different dependence as a function of both E-0 and N, underlying important differences in mechanisms leading to the formation of ripples and grooves. In particular, our experimental characterization allows identifying a preliminary stage of grooves generation with rudimental surface structures, preferentially directed parallel to the laser polarization. This supports the idea that one possible mechanism of grooves formation lies in the progressive aggregation of clusters of nanopartides densely decorating the ripples. Our experimental findings provide important indications on the basic understanding of the processes involved in laser surface structuring with ultrashort pulses that can guide the design of the surface patterns. (C) 2016 Elsevier B.V. All rights reserved

    Double-Framed Thin Elastomer Devices

    Get PDF
    Elastomers and, in particular, polydimethylsiloxane (PDMS) are widely adopted as biocompatible mechanically compliant substrates for soft and flexible micro-nanosystems in medicine, biology, and engineering. However, several applications require such low thicknesses (e.g., <100 μm) that make peeling-off critical because very thin elastomers become delicate and tend to exhibit strong adhesion with carriers. Moreover, microfabrication techniques such as photolithography use solvents which swell PDMS, introducing complexity and possible contamination, thus limiting industrial scalability and preventing many biomedical applications. Here, we combine low-adhesion and rectangular carrier substrates, adhesive Kapton frames, micromilling-defined shadow masks, and adhesive-neutralizing paper frames for enabling fast, easy, green, contaminant-free, and scalable manufacturing of thin elastomer devices, with both simplified peeling and handling. The accurate alignment between the frame and shadow masks can be further facilitated by micromilled marking lines on the back side of the low-adhesion carrier. As a proof of concept, we show epidermal sensors on a 50 μm-thick PDMS substrate for measuring strain, the skin bioimpedance and the heart rate. The proposed approach paves the way to a straightforward, green, and scalable fabrication of contaminant-free thin devices on elastomers for a wide variety of applications.Elastomers and, in particular, polydimethylsiloxane (PDMS) are widely adopted as biocompatible mechanically compliant substrates for soft and flexible micro-nanosystems in medicine, biology, and engineering. However, several applications require such low thicknesses (e.g., <100 μm) that make peeling-off critical because very thin elastomers become delicate and tend to exhibit strong adhesion with carriers. Moreover, microfabrication techniques such as photolithography use solvents which swell PDMS, introducing complexity and possible contamination, thus limiting industrial scalability and preventing many biomedical applications. Here, we combine low-adhesion and rectangular carrier substrates, adhesive Kapton frames, micromilling-defined shadow masks, and adhesive-neutralizing paper frames for enabling fast, easy, green, contaminant-free, and scalable manufacturing of thin elastomer devices, with both simplified peeling and handling. The accurate alignment between the frame and shadow masks can be further facilitated by micromilled marking lines on the back side of the low-adhesion carrier. As a proof of concept, we show epidermal sensors on a 50 μm-thick PDMS substrate for measuring strain, the skin bioimpedance and the heart rate. The proposed approach paves the way to a straightforward, green, and scalable fabrication of contaminant-free thin devices on elastomers for a wide variety of applications
    • …
    corecore